Engineering progress Enhancing lives

Schutz vor Überflutung durch Starkregen

Überflutungsschutz auf dem Grundstück und kommunales Risikomanagement

Hagen Güssow REHAU Akademie

Schutz vor Starkregen durch Rückhaltung und Versickerung

- 1 Kompetenz in der Regenwasserbewirtschaftung
- 2 Begriffe und Normen was ist Starkregen?
- 3 Kommunales Starkregenmanagement DWA M 119 Überflutungsschutz auf dem Grundstück DIN 1986-100
- 4 Technische Lösung und Praxisbeispiele
- 5 Serviceangebot & Schlußwort

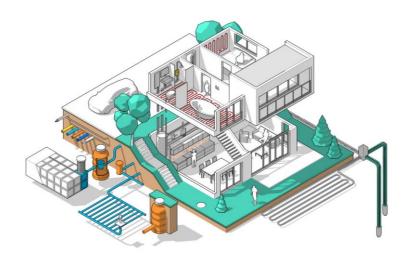
Wer wir sind – REHAU im Überblick

Premiummarke für polymerbasierte Lösungen ist REHAU seit 1948 in den Bereichen Bau, Automotive und Industrie

Mehr als 170 Standorte

In über **50** Ländern

Über **20.000** Mitarbeiter weltweit


Bundesweit: rund **8.000** Mitarbeiter

Wer wir sind – REHAU im Überblick

Wer wir sind – REHAU im Überblick

KANALBAU / -SANIERUNG

Hochlastkanalrohrsystem AWADUKT PP SN10/SN16

AUSBAU DER ÜBERTRAGUNGSNETZE

RAUGUARD HV – 380 kV Schutzrohr

REGENWASSERBEWIRTSCHAFTUNG

RAUSIKKO Versickerungsboxen mit Reinigungskanal

GLASFASERAUSBAU

RAUSPEED Mikrokabelrohrsystem

Schutz vor Starkregen durch Rückhaltung und Versickerung

- 1 Kompetenz in der Regenwasserbewirtschaftung
- 2 Begriffe und Normen was ist Starkregen?
- 3 Kommunales Starkregenmanagement DWA M 119 Überflutungsschutz auf dem Grundstück DIN 1986-100
- 4 Technische Lösung und Praxisbeispiele
- 5 Serviceangebot & Schlußwort

Einleitung – Regenmenge/Zeit

Worüber reden wir?

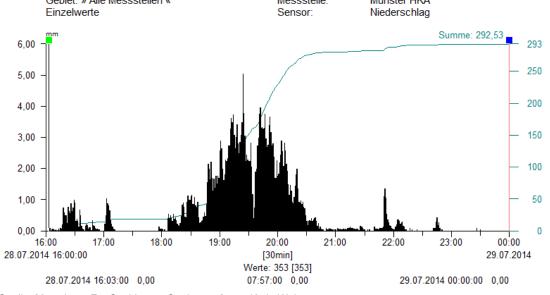
Wann ist ein Regen ein Starkregen?

Definition des DWD

- 15-25 l/h oder

- 20-35 I in 6 h

Markante Wetterwarnung


- > 25 l/h oder

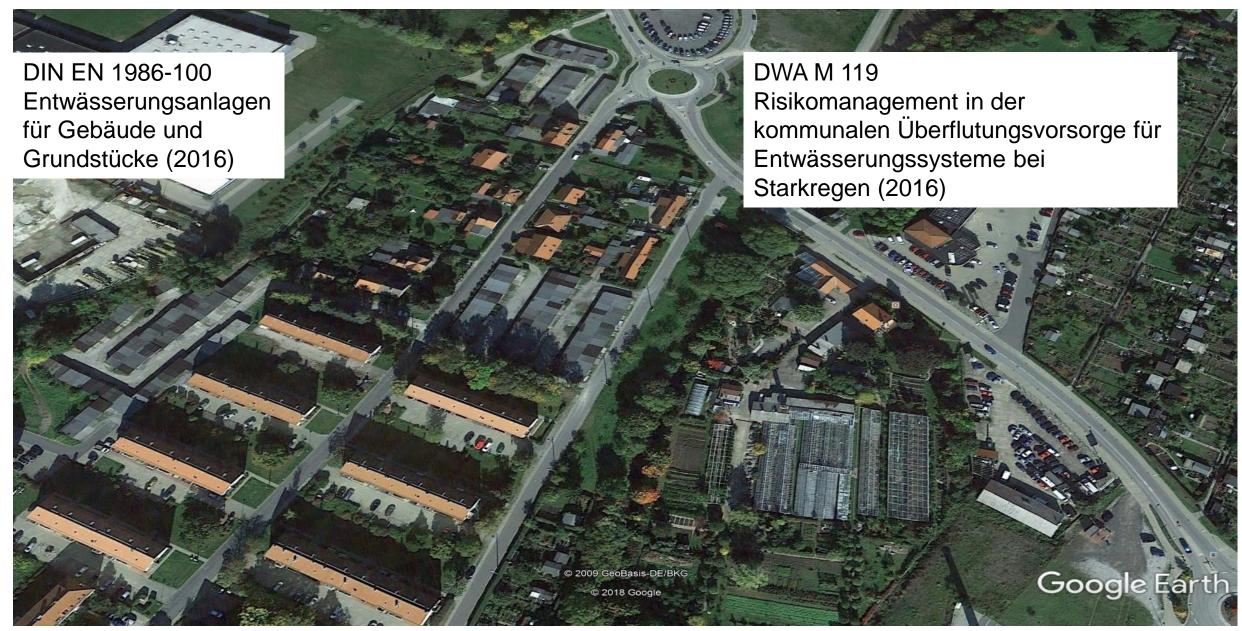
- > 35 I in 6 h

Unwetterwarnung

Quelle: Messdaten Fa. Ott; Vortrag Starkregenforum Katja Weber

Begriffe und Normen

- Die rechtlichen Grundlagen
 - Urbane Starkregen fallen nicht unter den Hochwasserbegriff...
 - ...sondern: gesammeltes Regenwasser = Abwasser!
 - Regen(ab)wasser ist nach dem Stand der Technik zu bewirtschaften
 - Problem: Stand der Technik ist für Starkregen nicht definiert!
- Grundstücke: DIN EN 1986-100 (2016)
- Öffentliche Flächen: DIN EN 752 (2017)
 DWA A 118 (2006)
 DWA M 119 (2016)
- Leitfaden Kommunales Starkregenrisikomanagement http://www4.lubw.baden-wuerttemberg.de/servlet/is/261161/



Schutz vor Starkregen durch Rückhaltung und Versickerung

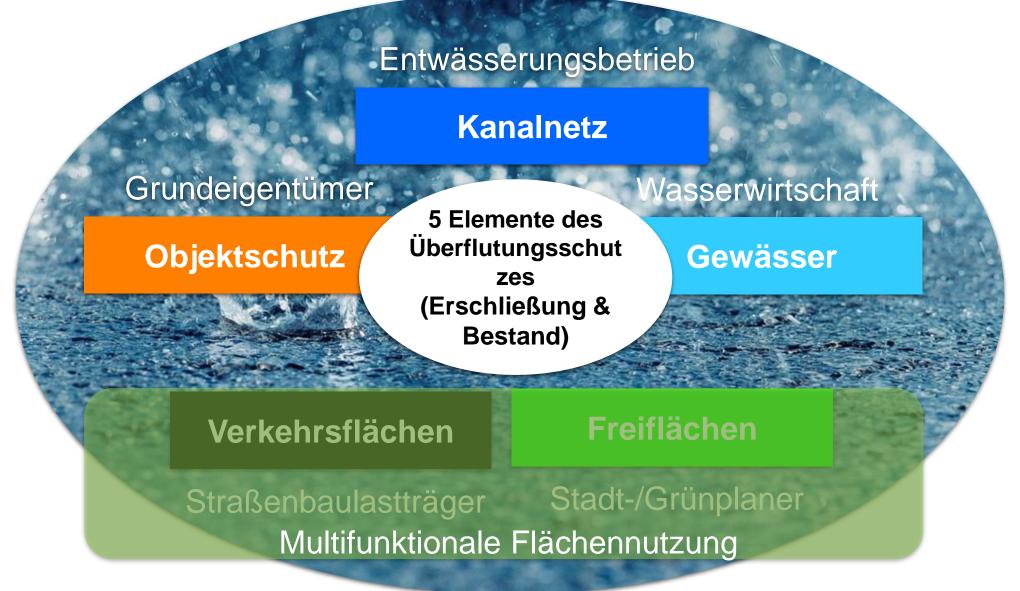
- 1 Kompetenz in der Regenwasserbewirtschaftung
- 2 Begriffe und Normen was ist Starkregen?
- 3 Kommunales Starkregenmanagement DWA M 119 Überflutungsschutz auf dem Grundstück nach DIN 1986-100
- 4 Technische Lösung und Praxisbeispiele
- 5 Serviceangebot & Schlußwort

DIN EN 1986-100 und DWA-M 119

DWA-M 119

"Sicherheitsversprechen"

Risikomanagement


DWA-M 119

Risiko = Gefährdung x Schadenspotenzial

Quelle: Assmann und Illgen (2014)

Überflutungsschutz – eine kommunale Gemeinschaftsaufgabe

Quelle: Krieger, 2015

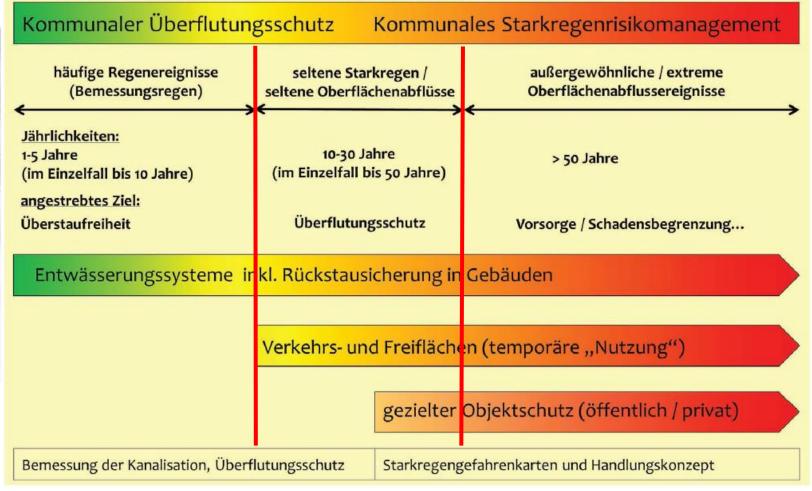

(Stark-) Regenwassermanagement

Tabelle 2: In DIN EN 752 empfohlene Häufigkeiten für den Entwurf

Häufigkeit der Bemessungs- regen ¹⁾ (1-mal in "n" Jahren)	Ort	Über- flutungs- häufigkeit (1-mal in "n" Jahren)	
1 in 1	Ländliche Gebiete	1 in 10	
1 in 2	Wohngebiete	1 in 20	
	Stadtzentren, Industrie- und Gewerbegebiete:		
1 in 2	 mit Über- flutungsprüfung, 	1 in 30	
1 in 5	 – ohne Über- flutungsprüfung 	_	
1 in 10	Unterirdische Verkehrsanlagen, Unterführungen	1 in 50	

Quelle: DWA-A 118

Abgrenzung zum Überflutungsschutz im Kanalwesen

Quelle: Ingenieurgesellschaft Prof. Dr. Sieker mbH -

DIN 1986-100

30-jähriger Regen

2-jähriger Regen

Überflutungsnachweis

Berücksichtigung der Differenz zwischen mindestens 30-jährlichem Ereignis und 2-jährlichem Bemessungsregen

In sensiblen Bereichen höhere Jährlichkeit wählen

Nachweis für 100-jährliches Ereignis bei weitgehendem (>70%) Dachflächenanteil und nicht schadlos überflutbaren Flächen!

erforderlich bei Grundstücken (A_{II} > 800 m²), für die ein Anschlusskanal größer DN150 erforderlich ist

Überflutungsvorsorge

Rückhaltung im offenen Becken

Quelle: Vortrag Dr. Kaiser, KaiserIngenieure

Überflutungsvorsorge – Straße als Retentionsraum

Quelle: Vortrag Dr. Kaiser, KaiserIngenieure

Schutz vor Starkregen durch Rückhaltung und Versickerung

- 1 Kompetenz in der Regenwasserbewirtschaftung
- 2 Begriffe und Normen was ist Starkregen?
- 3 Kommunales Starkregenmanagement DWA M 119 Überflutungsschutz auf dem Grundstück DIN 1986-100
- 5 Technische Lösung und Praxisbeispiele
- 6 Serviceangebot & Schlußwort

Überflutungsvorsorge

Regen

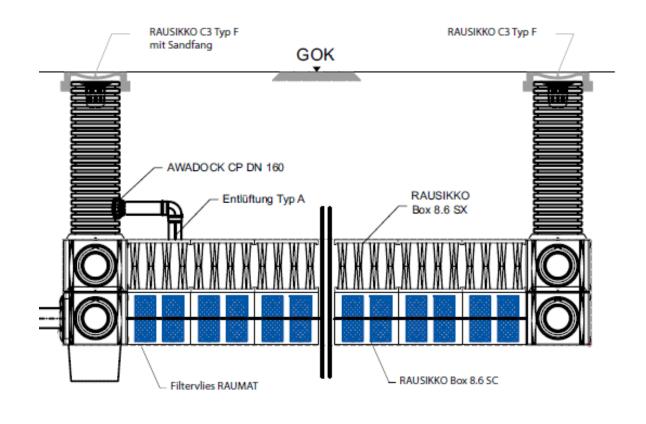
Flächen?

Fließwege erkennen

Außenbereiche!

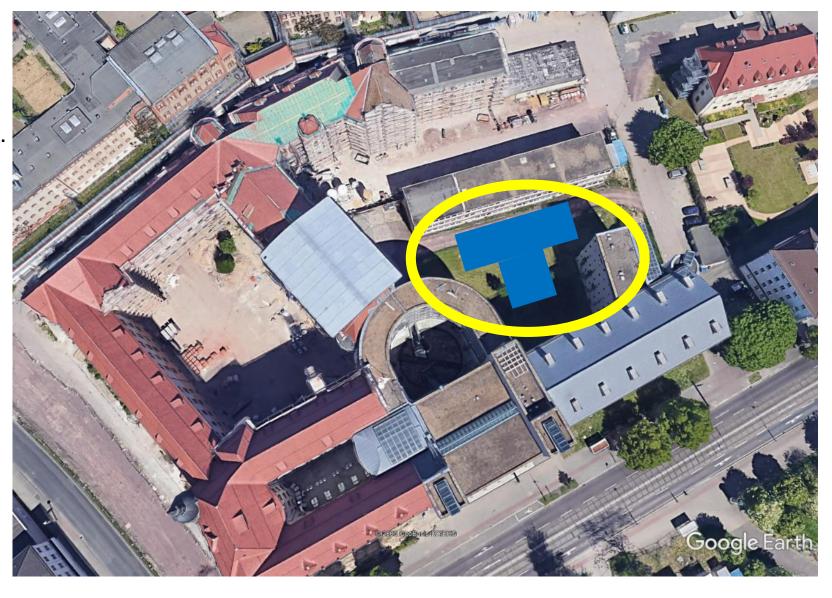
Dezentrale Versickerung

Rückhaltung – verzögerte Einleitung



Quelle: http://www.braunsbach.de/index.php?id=3&no_cache=1

RAUSIKKO®-BOX


Versickerung Retention	Überflutungsschutz	Löschwasser	Nutzung
------------------------	--------------------	-------------	---------

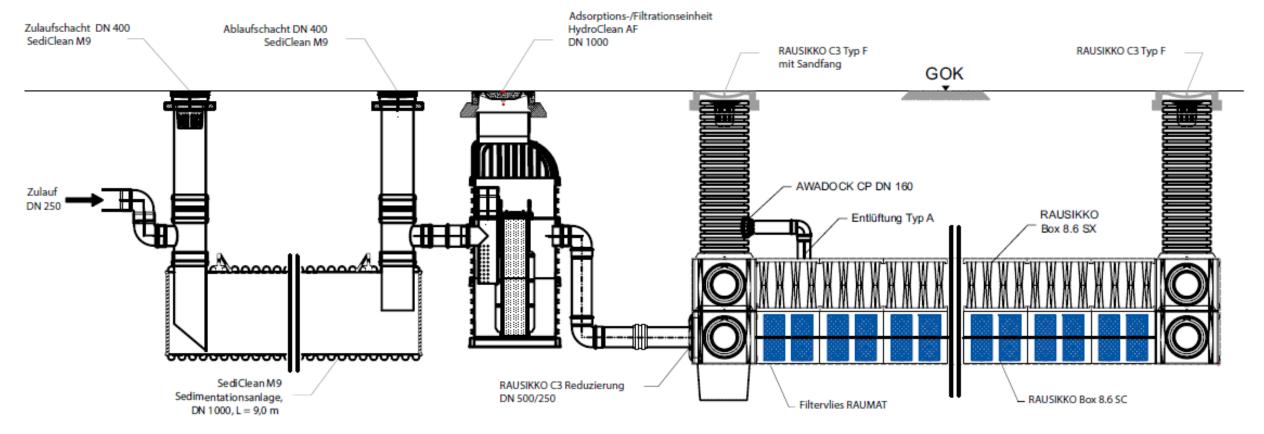
Magdeburg - Umwidmung JVA

Randbedingungen

- Umwidmung der bestehenden JVA mit einer Dachfläche von 23.000m².
- Gleichzeitige Neuordnung der Entwässerungsleitungen.
- Abtrennung vom öffentlichen Kanal gewünscht, um RW-Gebühr einzusparen.

Quelle: Google Earth

Magdeburg - Umwidmung JVA


Bild: Güssow

Die Lösung

- Unterirische Versickerung nach DWA-A 138 inkl. Überflutungsschutz 1986-100 Gesamtvolumen mit einer Rigolengröße von 500 m³
- Damit auch Abtrennung von der Vorflut
- Nachweis der Vorbehandlung nach DWA M 153 für eine Fläche von:
 - $A_{red} = 1.500 \text{ m}^2$
 - 3 HydroClean Typ M

RAUSIKKO®-BOX

Versickerung Retention Überflutungsschutz Löschwasser Nutzung

Randbedingungen

- Das Regensiel in der Möllner Straße konnte bei stärkerem Regen das NW nicht mehr abtransportieren
- Die U-Bahn-Eingänge Merkenstraße waren dadurch immer wieder geflutet worden
- Eine Ertüchtigung der Siele kam nicht in Betracht, da die Vorflut, der Schleemer Bach bereits hydraulisch ausgelastet war
- Dadurch wechselnde Nutzung mit wechselnden statischen Auflasten

Quelle: Google Earth

Die Lösung

 Im Rahmen von RISA (RegenInfra StrukturAnpassung) Modernisierung der Sportanlagen

Quellen: https://www.hamburg.de/pressearchiv-fhh/12979140/2019-09-23-bue-regen-in-rigolen/ https://www.abendblatt.de/hamburg/article227174751/Einzigartiger-Ueberflutungsschutz-entsteht-in-Billstedt.html https://www.mopo.de/hamburg/bundesweit-nur-in-hamburg-stadion-soll-stadt-bei-starkregen-vor-ueberflutungen-retten-33210392

Die Lösung

- Im Rahmen von RISA (RegenInfra StrukturAnpassung) Modernisierung der Sportanlagen
- Bau einer unterirdischen Versickeranlage mit 500m³ Volumen aufgeteilt auf 2 Rigolen:
 - RAUSIKKO Box 8.6 SC = 94
 - RAUSIKKO Box 8.6 S = 1.105
 - C3 Schächte = 6
 - Anschlüsse: 1xDN 500
 1xDN 500+2xDN 400

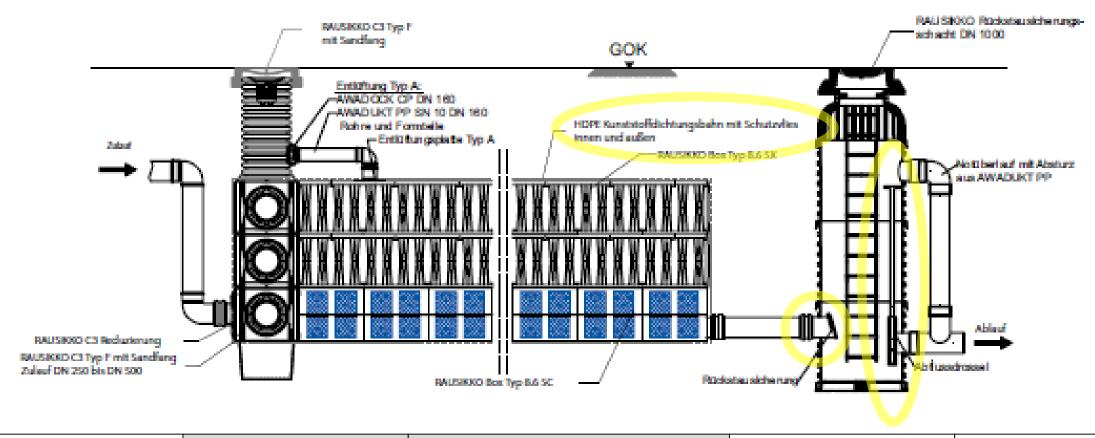
Quellen: https://www.hamburg.de/pressearchiv-fhh/12979140/2019-09-23-bue-regen-in-rigolen/
https://www.abendblatt.de/hamburg/article227174751/Einzigartiger-Ueberflutungsschutz-entsteht-in-Billstedt.html
https://www.mopo.de/hamburg/bundesweit-nur-in-hamburg-stadion-soll-stadt-bei-starkregen-vor-ueberflutungen-retten-33210392

Die Lösung

- Im Rahmen von RISA (RegenInfra StrukturAnpassung) Modernisierung der Sportanlagen
- Bau einer unterirdischen Versickeranlage mit 500m³ Volumen aufgeteilt auf 2 Rigolen:
 - RAUSIKKO Box 8.6 SC = 94
 - RAUSIKKO Box 8.6 S = 1.105
 - C3 Schächte = 6
 - Anschlüsse: 1xDN 500
 1xDN 500+2xDN 400
- Regenereignis stärker als Bemessungsregen für den Kanal

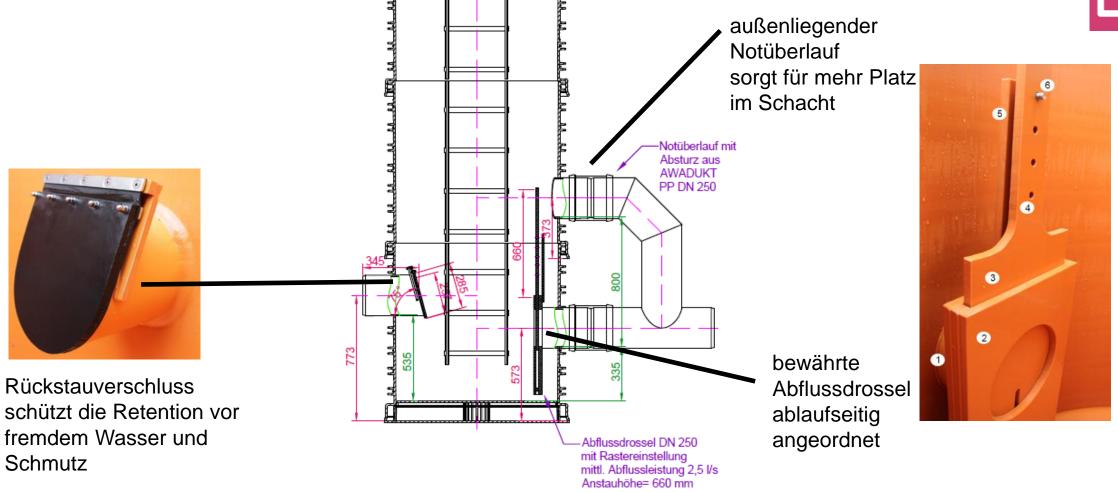
Quellen: https://www.hamburg.de/pressearchiv-fhh/12979140/2019-09-23-bue-regen-in-rigolen/
https://www.abendblatt.de/hamburg/article227174751/Einzigartiger-Ueberflutungsschutz-entsteht-in-Billstedt.html
https://www.mopo.de/hamburg/bundesweit-nur-in-hamburg-stadion-soll-stadt-bei-starkregen-vor-ueberflutungen-retten-33210392

Die Lösung


- Im Rahmen von RISA (RegenInfra StrukturAnpassung) Modernisierung der Sportanlagen
- Bau einer unterirdischen Versickeranlage mit 500m³ Volumen aufgeteilt auf 2 Rigolen:
 - RAUSIKKO Box 8.6 SC = 94
 - RAUSIKKO Box 8.6 S = 1.105
 - C3 Schächte = 6
 - Anschlüsse: 1xDN 500
 1xDN 500+2xDN 400
- Regenereignis stärker als Bemessungsregen für den Kanal
- Bei mehr als 24l/h erfolgt ein Überlauf auf die Sportplatzfläche

Quellen: https://www.hamburg.de/pressearchiv-fhh/12979140/2019-09-23-bue-regen-in-rigolen/
https://www.hamburg.de/pressearchiv-fhh/12979140/2019-09-23-bue-regen-in-rigolen/
https://www.hamburg.de/pressearchiv-fhh/12979140/2019-09-23-bue-regen-in-rigolen/
https://www.hamburg.de/pressearchiv-fhh/12979140/2019-09-23-bue-regen-in-rigolen/
https://www.mopo.de/hamburg/bundesweit-nur-in-hamburg-stadion-soll-stadt-bei-starkregen-vor-ueberflutungsn-retten-33210392">https://www.mopo.de/hamburg/bundesweit-nur-in-hamburg-stadion-soll-stadt-bei-starkregen-vor-ueberflutungsn-retten-33210392

RAUSIKKO®-BOX



Überflutungsschutz Löschwasser Versickerung Retention **Nutzung**

RAUSIKKO®-Drosselschacht

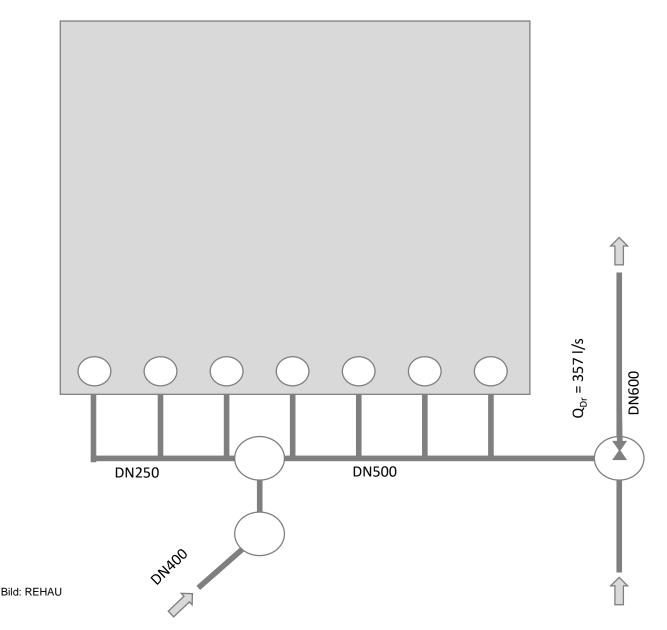
Versickerung R	Retention Ü	berflutungsschutz	Löschwasser	Nutzung
----------------	-------------	-------------------	-------------	---------

Kempten – RRB "Im Allmey"

Randbedingungen

- Entwässerung im OT Steufzgen im Trennverfahren
- Das NW wird dabei in einen verrohrten Bach geleitet, der in die Iller fließt
- Bei Starkregen war dieses System durch fortschreitende Versiegelung in diesem Gebiet überlastet
- Daher wurde zum 01.01.2018 die wasserrechtliche Genehmigung überarbeitet und ein RRB gefordert
- Wunsch der Kommune, die Fläche oberirdisch weiter zu nutzen

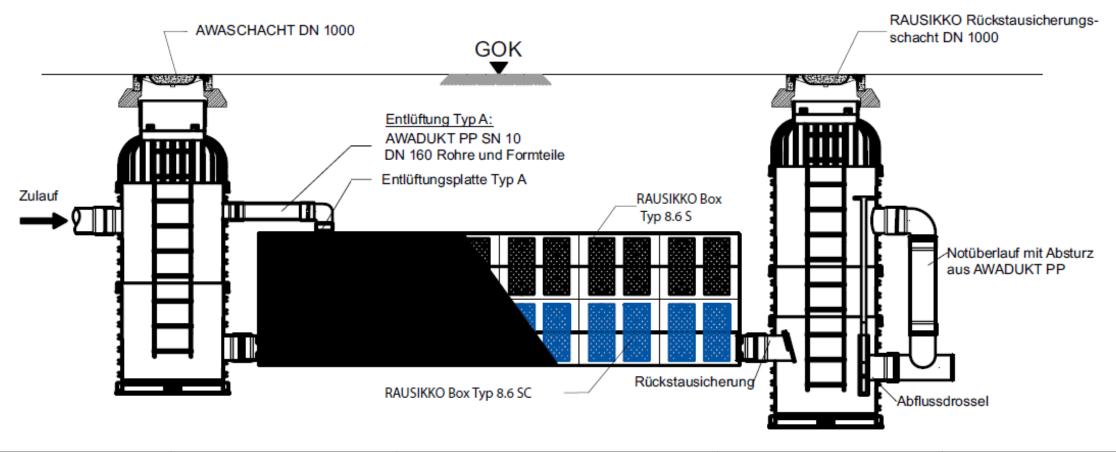
Kempten – RRB "Im Allmey"



Die Lösung

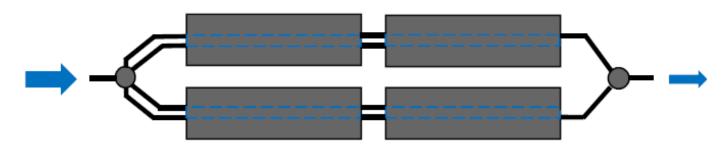
- Unterirische Rückhaltung nach DWA-A 117 und Überflutungsschutz nach DIN 1986-100 Gesamtvolumen mit einer Größe von 680 m³
- Einsatz von RAUSIKKO SX –
 Boxen für eine platzsparende
 Baustelleneinrichtung und schnelle
 Montage

Kempten – RRB "Im Allmey"

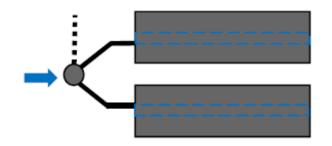

Die Lösung

- Unterirische Rückhaltung nach DWA-A 117 und Überflutungsschutz nach DIN 1986-100 Gesamtvolumen mit einer Größe von 680 m³
- Einsatz von RAUSIKKO SX –
 Boxen für eine platzsparende
 Baustelleneinrichtung und schnelle
 Montage
- Anschluß über ein Abschlagsbauwerk, das bei Starkregen anspringt
- Gedrosselter Abschlag über Abschlagsbauwerk mit 357 l/s

RAUSIKKO®- One


Versickerung Retention Überflutungsschutz Löschwasser Nutzung

RAUSIKKO®-One das kompakte Fertigmodul

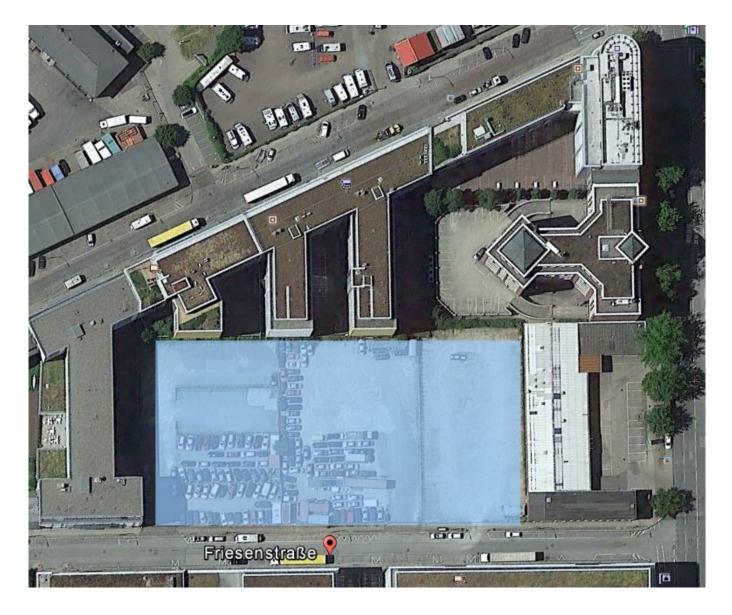

RAUSIKKO®-One das kompakte Fertigmodul

Vorgefertigte RAUSIKKO Retentionsmodule:

Kombination von Modulen:

z.B. Retentionsbecken mit V= 96 m³ bestehend aus 4 Modulen a 24 m³ mit Zulauf- und Drosselschacht

- z.B. Löschwasserspeicher mit V= 48 m³ bestehend aus 2 Modulen a 24 m³ mit Zulauf- / Entnahmeschacht


Hamburg - Friesenstraße

Randbedingungen

 Wohnbebauung als Nachverdichtung im Innenstadtbereich

Dachfläche Nord: 1.326 m²
 Hoffläche Nord: 876 m²
 Dachfläche Süd: 1.365 m²
 Hoffläche Süd: 876 m²

 Sehr knappe Bauzeit bei gleichzeitig sehr beengten Platzverhältnissen

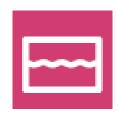
Hamburg - Friesenstraße

Die Lösung

 Unterirische Rückhaltung nach DWA-A 117 und Überflutungsschutz nach DIN 1986-100 Gesamtvolumen mit einer Rigolengröße von

Rigole Nord: 43 m³
Rigole Süd: 45 m³
88 m³

Gedrosselter Abschlag in den öffentlichen Kanal: 12,5 l/s


Jährlichkeit Retention: 0,2

A Hamburg - Friesenstraße

Schutz vor Starkregen durch Rückhaltung und Versickerung

- 1 Kompetenz in der Regenwasserbewirtschaftung
- 2 Begriffe und Normen was ist Starkregen?
- 3 Kommunales Starkregenmanagement DWA M 119 Überflutungsschutz auf dem Grundstück DIN 1986-100
- 4 Technische Lösung und Praxisbeispiele
- 5 Serviceangebot & Schlußwort

Unser Service für Sie

Planungstool RAUSIKKO Software

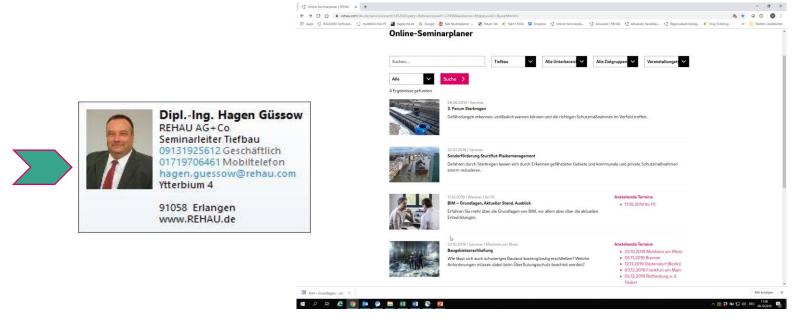
- Bemessung von Retentionen gem. DWA-A 117
- Bemessung von Versickerungen gem. DWA-A 138
- Bemessung von Reinigungsanlagen gem. DWA-M153
- ✓ Nachweis Überflutung gem. DIN 1986-100

http://www.rehau.com/de-de/architekten-planer/tiefbau/regenwasser/service-planung

Unser Service für Sie

Seminarangebote

✓ Seminare an zentralen Standorten oder als Roadshow



Fachvorträge als Gastreferent

✓ Inhouse – Seminare

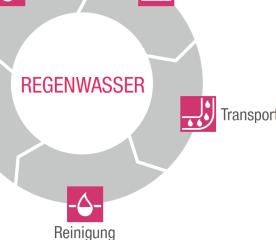
Mitarbeiterschulungen

Zusammenfassung – was können wir tun?

Regen

Flächen?

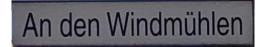
Fließwege erkennen

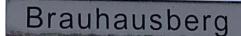

Außenbereiche!

Dezentrale Versickerung

Rückhaltung – verzögerte Einleitung

Sensible Planung von Baugebieten

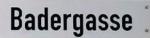


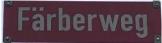

Sammlung

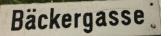
Versickerung _______

Sensible Planung von Baugebieten

Was verraten uns Straßennamen?

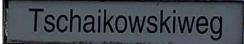


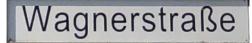




Metzgergasse

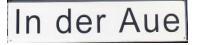
Gerberstraße





Sensible Planung von Baugebieten

Was verraten uns Straßennamen?



hagen.guessow@rehau.com

Zusammenfassung – was können wir tun?

Regen

Flächen?

Reinigung

Versickerung _______

Rückhaltung

Sammlung

Fließwege erkennen

Außenbereiche!

Dezentrale Versickerung


Rückhaltung – verzögerte Einleitung

Sensible Planung von Baugebieten

Aufklärung - Transparenz

Objektschutz

Engineering progress Enhancing lives

Schutz vor Überflutung durch Starkregen

Überflutungsschutz auf dem Grundstück und kommunales Risikomanagement

Hagen Güssow REHAU Akademie

Danke!

